DocumentCode :
3242520
Title :
Sequential optimization: robust subspace fitting for multiple source location
Author :
Yemc, David J.
Author_Institution :
Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA
Volume :
5
fYear :
1992
fDate :
23-26 Mar 1992
Firstpage :
397
Abstract :
An efficient algorithm designed to solve the multiple source location problem using sensor arrays is described. The algorithm is one of the class of subspace fitting techniques for source location and, in practice, it matches the performance of maximum likelihood estimation procedures. The method minimizes the error between a model of the array steering vector and the weighted eigenvectors from the measured covariance matrix of the actual array. An extension is developed for the purpose of improving estimation accuracy in the presence of sensor array errors. Simulated and experimental results are presented
Keywords :
array signal processing; eigenvalues and eigenfunctions; optimisation; parameter estimation; DOA estimation; array processing; array steering vector; covariance matrix; error minimisation; multiple source location; sensor arrays; sequential optimisation; subspace fitting; weighted eigenvectors; Computational efficiency; Covariance matrix; Maximum likelihood estimation; Parameter estimation; Position measurement; Radar applications; Robustness; Sensor arrays; Signal resolution; Transmission line matrix methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1520-6149
Print_ISBN :
0-7803-0532-9
Type :
conf
DOI :
10.1109/ICASSP.1992.226599
Filename :
226599
Link To Document :
بازگشت