DocumentCode :
3242792
Title :
On error function selection for the analysis of nonlinear time series
Author :
Drake, Daniel F. ; Williams, Douglas B.
Author_Institution :
Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
5
fYear :
1992
fDate :
23-26 Mar 1992
Firstpage :
329
Abstract :
The extreme sensitivity of a chaotic system´s steady state response to small changes in its initial conditions makes long term prediction of the evolution of such a system difficult, if not impossible. In the framework of parameter estimation, it is shown how this sensitivity can hinder attempts to determine model parameters that will reproduce a target chaotic time sequence. Specifically, a waveform error minimization technique based on gradient descent optimization is not well suited for estimating the parameters of a strongly chaotic system. A modification of this minimization procedure that avoids some of the obstacles present when estimating the parameters of a chaotic system is proposed
Keywords :
chaos; error analysis; minimisation; parameter estimation; time series; chaotic system; error function; gradient descent optimization; initial conditions; model parameters; nonlinear time series; parameter estimation; steady state response; target chaotic time sequence; waveform error minimization; Chaos; Chemicals; Contracts; Difference equations; Nonlinear equations; Parameter estimation; Physics; Steady-state; Surface waves; Time series analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1520-6149
Print_ISBN :
0-7803-0532-9
Type :
conf
DOI :
10.1109/ICASSP.1992.226616
Filename :
226616
Link To Document :
بازگشت