DocumentCode :
3245017
Title :
Object tracking with global and local dynamics model
Author :
Wang, Ning ; Xiang, Jin-hai ; Sun, Wei-ping ; Zhou, Jing-li
Author_Institution :
Sch. of Comput., Huazhong Univ. of Sci. & Technol., Wuhan, China
fYear :
2012
fDate :
15-17 July 2012
Firstpage :
233
Lastpage :
237
Abstract :
We present a novel method for object tracking using global and local states of object in video surveillance application. Most traditional object models using global appearance cannot handle partial occlusion effectively. The unoccluded part of partially visible object retains invariable appearance. Therefore, we introduce global and local dynamics model as our object model to overcome partial occlusion using local feature, and apply it to Bayesian tracking problem using motion-based particle filtering. Finally, experiments on some video surveillance sequences demonstrate the effectiveness and robustness of our approach for tracking object motions in video surveillance.
Keywords :
Bayes methods; computer graphics; feature extraction; image motion analysis; object tracking; particle filtering (numerical methods); video surveillance; Bayesian tracking problem; global appearance; global dynamics model; local dynamics model; motion-based particle filtering; object local states; object model; object motion tracking; partial occlusion; partially visible object; video surveillance application; Bayesian methods; Cameras; Dynamics; Estimation; Filtering; Global dynamics model; Local dynamics model; Object tracking; Particle filtering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition (ICWAPR), 2012 International Conference on
Conference_Location :
Xian
ISSN :
2158-5695
Print_ISBN :
978-1-4673-1534-0
Type :
conf
DOI :
10.1109/ICWAPR.2012.6294784
Filename :
6294784
Link To Document :
بازگشت