Title :
Two-dimensional quaternion Fourier transform of type II and quaternion wavelet transform
Author :
Bahri, Mawardi ; Ashino, Ryuichi ; Vaillancourt, Rémi
Author_Institution :
Dept. of Math., Univ. Hasanuddin, Indonesia
Abstract :
A two-dimensional quaternion Fourier transform (QFT) defined with the kernel e - i+j+k/√3 ω · x is proposed. Some fundamental properties, such as convolution theorem and Plancherel theorem are established. The wavelet transform is extended to quaternion algebra using the kernel of the QFT.
Keywords :
Fourier transforms; algebra; convolution; wavelet transforms; Plancherel theorem; QFT; QFT kernel; convolution theorem; quaternion algebra; quaternion wavelet transform; two-dimensional quaternion Fourier transform; type II; Algebra; Fourier transforms; Kernel; Quaternions; Wavelet analysis; Wavelet transforms; Quaternion Fourier transform; Quaternion algebra; Quaternion-valued function;
Conference_Titel :
Wavelet Analysis and Pattern Recognition (ICWAPR), 2012 International Conference on
Conference_Location :
Xian
Print_ISBN :
978-1-4673-1534-0
DOI :
10.1109/ICWAPR.2012.6294808