DocumentCode :
3245472
Title :
Two-dimensional quaternion Fourier transform of type II and quaternion wavelet transform
Author :
Bahri, Mawardi ; Ashino, Ryuichi ; Vaillancourt, Rémi
Author_Institution :
Dept. of Math., Univ. Hasanuddin, Indonesia
fYear :
2012
fDate :
15-17 July 2012
Firstpage :
359
Lastpage :
364
Abstract :
A two-dimensional quaternion Fourier transform (QFT) defined with the kernel e - i+j+k/√3 ω · x is proposed. Some fundamental properties, such as convolution theorem and Plancherel theorem are established. The wavelet transform is extended to quaternion algebra using the kernel of the QFT.
Keywords :
Fourier transforms; algebra; convolution; wavelet transforms; Plancherel theorem; QFT; QFT kernel; convolution theorem; quaternion algebra; quaternion wavelet transform; two-dimensional quaternion Fourier transform; type II; Algebra; Fourier transforms; Kernel; Quaternions; Wavelet analysis; Wavelet transforms; Quaternion Fourier transform; Quaternion algebra; Quaternion-valued function;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition (ICWAPR), 2012 International Conference on
Conference_Location :
Xian
ISSN :
2158-5695
Print_ISBN :
978-1-4673-1534-0
Type :
conf
DOI :
10.1109/ICWAPR.2012.6294808
Filename :
6294808
Link To Document :
بازگشت