DocumentCode :
3249789
Title :
Evolution strategy applied to global optimization of clusters in gene expression data of DNA microarrays
Author :
Lee, Kwonmoo ; Kim, Ju Han ; Chung, Tae Su ; Moon, Byoung-Sun ; Lee, Hoseung ; Kohane, Isaac S.
Author_Institution :
Bioinf. Lab., Samsung SDS, Seoul, South Korea
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
845
Abstract :
Cluster analysis is the most important method for analyzing large-scale gene expression patterns. The matrix representation of microarray data and its successive `optimal´ incisional hyperplanes that create top-down hierarchical tree are a useful platform for developing optimization algorithms to determine the `optimal´ clusters from a pairwise proximity matrix which represents completely connected and weighted graph. Evolution strategy is applied to determine the `globally optimal´ incisional hyperplanes to construct hierarchical tree structure and tested with Fisher´s iris and Golub´s leukemia data sets. The results were compared with those of bottom-up hierarchical clustering, K-means and SOMs (Self-Organizing Maps) algorithms with promising results
Keywords :
biocomputing; genetic algorithms; pattern clustering; DNA microarrays; K-means; bottom-up hierarchical clustering; cluster analysis; evolution strategy; gene expression data; global optimization; incisional hyperplanes; large-scale gene expression patterns; matrix representation; pairwise proximity matrix; top-down hierarchical tree; weighted graph; Bioinformatics; Cancer; DNA; Gene expression; Genomics; Hospitals; Humans; Information analysis; Large-scale systems; Sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2001. Proceedings of the 2001 Congress on
Conference_Location :
Seoul
Print_ISBN :
0-7803-6657-3
Type :
conf
DOI :
10.1109/CEC.2001.934278
Filename :
934278
Link To Document :
بازگشت