DocumentCode :
3251516
Title :
Parameter estimation of synchronous machines using particle swarm optimization
Author :
Hutchison, Graeme ; Zahawi, Bashar ; Giaouris, Damian ; Harmer, Keith ; Stedall, Bruce
Author_Institution :
Newcastle Univ., Newcastle upon Tyne, UK
fYear :
2010
fDate :
14-17 June 2010
Firstpage :
348
Lastpage :
351
Abstract :
Synchronous machines are the most widely used electrical machine in power generation. Identifying the parameters of these machines in a non invasive way is very challenging due to the inherent nonlinearity of machine performance. This paper proposes a synchronous machine parameter identification method using particle swarm optimization (PSO) with a constriction factor. PSO is an intelligent computational method based on a stochastic search that has been shown to be a versatile and efficient tool for complicated engineering problems. A modified version of PSO allows a synchronous machine model output to be used as the objective function, thus allowing a new, more efficient method of parameter identification. This paper highlights the effectiveness of the proposed method for the identification of synchronous machine model parameters, using both simulation and manufacturers measured experimental data.
Keywords :
electric power generation; machine theory; parameter estimation; particle swarm optimisation; synchronous machines; constriction factor; electrical machine; intelligent computational method; parameter estimation; parameter identification; particle swarm optimization; power generation; stochastic search; synchronous machine; Computational intelligence; Machine intelligence; Parameter estimation; Particle swarm optimization; Power engineering computing; Power generation; Pulp manufacturing; Stochastic processes; Synchronous machines; Virtual manufacturing; PSO; Parameter Identification; Particle Swarm Optimization; Synchronous Machines; component;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Probabilistic Methods Applied to Power Systems (PMAPS), 2010 IEEE 11th International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-5720-5
Type :
conf
DOI :
10.1109/PMAPS.2010.5528898
Filename :
5528898
Link To Document :
بازگشت