DocumentCode :
325317
Title :
Algebraic approach to robust controller design: a geometric interpretation
Author :
Enrion, Didierh ; SeBek, Michaelse ; Tarbouriech, Sophie
Author_Institution :
Lab. d´´Autom. et d´´Anal. des Syst., CNRS, Toulouse, France
Volume :
5
fYear :
1998
fDate :
21-26 Jun 1998
Firstpage :
2703
Abstract :
The problem of robust controller design is addressed for a single-input single-output plant with a single uncertain parameter. Given one controller that stabilizes the nominal plant, the Youla-Kucera parametrization of all stabilizing controllers and quadratic forms over Hermite-Fujiwara matrices are used to provide clear and simple geometric answers to the following questions: Can the plant be robustly stabilized by a nominally stabilizing controller? How can this robust controller be designed? Thanks to results on bilinear matrix inequalities, this geometric interpretation allows us to state the equivalence between robust controller design and the concave minimization problem
Keywords :
control system synthesis; geometry; matrix algebra; minimisation; robust control; Hermite-Fujiwara matrices; Youla-Kucera parametrization; algebraic approach; bilinear matrix inequalities; concave minimization problem; geometric interpretation; nominally stabilizing controller; robust controller design; single-input single-output plant; Algorithm design and analysis; Automatic control; Eigenvalues and eigenfunctions; Laboratories; Linear matrix inequalities; Linear systems; Polynomials; Robust control; Robustness; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1998. Proceedings of the 1998
Conference_Location :
Philadelphia, PA
ISSN :
0743-1619
Print_ISBN :
0-7803-4530-4
Type :
conf
DOI :
10.1109/ACC.1998.688341
Filename :
688341
Link To Document :
بازگشت