DocumentCode :
3253424
Title :
The refined optimal instrumental variable method of time series analysis
Author :
Wang, X.L. ; Zarrop, M.B.
Author_Institution :
Control Syst. Centre, Univ. of Manchester, Inst. of Sci. & Technol., UK
fYear :
1989
fDate :
0-0 1989
Firstpage :
459
Lastpage :
462
Abstract :
The properties of estimators of noise model parameters are investigated. The estimator covariance matrix is taken as a measure of accuracy, and it is shown to be optimized by an appropriate selection of instrumental variable (IV). The refined-optimal IV method is then proposed. The analysis and Monte-Carlo simulation results indicate that the algorithm yields asymptotically efficient estimation results, even for low sample size and low signal/noise ratios.<>
Keywords :
Monte Carlo methods; parameter estimation; time series; Monte-Carlo simulation; covariance matrix; estimators; noise model parameters; refined optimal instrumental variable method; refined-optimal IV method; time series analysis; Monte Carlo methods; Parameter estimation; Time series;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems Engineering, 1989., IEEE International Conference on
Conference_Location :
Fairborn, OH, USA
Type :
conf
DOI :
10.1109/ICSYSE.1989.48714
Filename :
48714
Link To Document :
بازگشت