DocumentCode :
3254688
Title :
Dictionary learning via projected maximal exploration
Author :
Mailhe, Boris ; Plumbley, Mark D.
Author_Institution :
Centre for Digital Music, Queen Mary Univ. of London, London, UK
fYear :
2013
fDate :
3-5 Dec. 2013
Firstpage :
626
Lastpage :
626
Abstract :
This work presents a geometrical analysis of the Large Step Gradient Descent (LGD) dictionary learning algorithm. LGD updates the atoms of the dictionary using a gradient step with a step size equal to twice the optimal step size. We show that the large step gradient descent can be understood as a maximal exploration step where one goes as far away as possible without increasing the error. We also show that the LGD iteration is monotonic when the algorithm used for the sparse approximation step is close enough to orthogonal.
Keywords :
approximation theory; geometry; gradient methods; learning (artificial intelligence); LGD iteration; cost function minimization; geometrical analysis; large step gradient descent dictionary learning algorithm; maximal exploration step; projected maximal exploration; sparse approximation step; Approximation algorithms; Approximation methods; Cost function; Dictionaries; Educational institutions; Signal processing algorithms; Dictionary learning; global optimization; projected gradient descent; sparse representations;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE
Conference_Location :
Austin, TX
Type :
conf
DOI :
10.1109/GlobalSIP.2013.6736963
Filename :
6736963
Link To Document :
بازگشت