Title :
Advanced experimental and simulation techniques for analysis of dynamic responses during drop impact
Author :
Tee, Tong Yan ; Luan, Jing-En ; Pek, Eric ; Lim, Chwee Teck ; Zhong, Zhaowei
Author_Institution :
STMicroelectronics, Singapore, Singapore
Abstract :
Board level solder joint reliability performance during drop test is a critical concern to semiconductor and electronic product manufacturers. A new JEDEC standard for board level drop test of handheld electronic products was just released to specify the drop test procedure and conditions. However, there is no detailed information stated on dynamic responses of printed circuit board (PCB) and solder joints which are closely related to stress and strain of solder joints that affect the solder joint reliability, nor there is any simulation technique which provides good correlation with experimental measurements of dynamic responses of PCB and the resulting solder joint reliability during the entire drop impact process. In this paper, comprehensive dynamic responses of PCB and solder joints, e.g., acceleration, strains, and resistance, are measured and analyzed with a multichannel real-time electrical monitoring system, and simulated with a novel input acceleration (Input-G) method. The solder joint failure process, i.e. crack initiation, propagation, and opening, is well understood from the behavior of dynamic resistance. It is found experimentally and numerically that the mechanical shock causes multiple PCB bending or vibration which induces the solder joint fatigue failure. It is proven that the peeling stress of the critical solder joint is the dominant failure indicator by simulation, which correlates well with the observations and assumptions by experiment. Coincidence of cyclic change among dynamic resistance of solder joints dynamic strains of PCB, and the peeling stress of the critical solder joints indicates that the solder joint crack opens and closes when PCB bends down and up, and the critical solder joint failure is induced by cyclic peeling stress. The failure mode and location of critical solder balls predicted by modeling correlate well with experimental observation by cross-section and dye penetration test.
Keywords :
ball grid arrays; circuit reliability; dynamic response; fatigue cracks; fatigue testing; finite element analysis; impact testing; printed circuit testing; production testing; soldering; JEDEC standard; PCB bending; PCB joints; PCB vibration; advanced simulation techniques; board level solder joint reliability; crack initiation; crack opening; crack propagation; critical solder joint; cyclic change; drop impact; drop test; dynamic resistance; dynamic response; fatigue failure; finite element model; handheld electronic products; input acceleration method; integrated testing and simulation; mechanical shock; multichannel real-time electrical monitoring; peeling stress; solder joint failure; thin-profile fine-pitch BGA; Acceleration; Accelerometers; Analytical models; Circuit testing; Electric resistance; Electrical resistance measurement; Electronic equipment testing; Soldering; Strain measurement; Stress;
Conference_Titel :
Electronic Components and Technology Conference, 2004. Proceedings. 54th
Print_ISBN :
0-7803-8365-6
DOI :
10.1109/ECTC.2004.1319475