Title :
An efficient parallel algorithm for the planar mincut linear arrangement problem for trees
Author_Institution :
Dept. of Comput. Sci. & Eng., Chung-Ang Univ., Seoul, South Korea
Abstract :
The MINCUT problem for graphs is to find a linear arrangement with minimum cut. The problem is NP-complete for general graphs while polynomial-time solvable for trees. The PLANAR MINCUT problem does not allow edge crossings in arrangements. We present a parallel algorithm for the PLANAR MINCUT problem for trees with n vertices, which takes O(log2 n) time and O(n) processors in the EREW PRAM
Keywords :
computational complexity; parallel algorithms; trees (mathematics); EREW PRAM; NP-complete; parallel algorithm; planar mincut; polynomial-time solvable; Computer science; Ear; Joining processes; Parallel algorithms; Phase change random access memory; Polynomials; Tree graphs; Vegetation mapping;
Conference_Titel :
Parallel Architectures, Algorithms, and Networks, 1997. (I-SPAN '97) Proceedings., Third International Symposium on
Conference_Location :
Taipei
Print_ISBN :
0-8186-8259-6
DOI :
10.1109/ISPAN.1997.645103