DocumentCode :
3260652
Title :
Using separable functional network for function approximation
Author :
Zhou, Yongquan ; Liu, Bai ; Huang, Huajuan ; Wei, Xingqong
Author_Institution :
Coll. of Math. & Comput. Sci., Guangxi Univ. for Nat., Nanning
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
855
Lastpage :
858
Abstract :
In this paper, separable functional network architecture and a learning algorithm of separable functional network are proposed, the learning of functional parameters use Lagrange multipliers by means of auxiliary function and solving a system of linear equations obtain parameters. An experiment in approximating typical continuous functions is given. The results show that the learning algorithm presented in the paper has excellent performance in approximation error.
Keywords :
function approximation; learning (artificial intelligence); mathematics computing; multiplying circuits; Lagrange multiplier; auxiliary function; function approximation; learning algorithm; linear equation; separable functional network; Approximation algorithms; Computer architecture; Computer science; Educational institutions; Equations; Function approximation; Lagrangian functions; Mathematics; Network topology; Neurons; function approximation; functional network; functional parameters; learning algorithm; separable functional network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
Type :
conf
DOI :
10.1109/GRC.2008.4664636
Filename :
4664636
Link To Document :
بازگشت