DocumentCode :
3260955
Title :
Bifurcating periodic solutions for a single delayed neuron model under periodic excitation
Author :
Liu, Qun ; Wang, Lanfen ; Wu, Yu
Author_Institution :
Coll. of Comput. Sci. & Technol., ChongQing Univ. of posts & Telecommun., Chongqing
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
452
Lastpage :
457
Abstract :
The dynamical characteristics of a single neuron model with time delay under periodic stimuli are studied in this paper. The analysis of the linear stability and the existence of Hopf bifurcation are given. Some numerical stimulations justify that the results of the analytical method are valid by a comparison with those of direct numerical integration.
Keywords :
bifurcation; delays; linear systems; neural nets; stability; Hopf bifurcation; linear stability analysis; periodic excitation; single delayed neuron model; time delay; Bifurcation; Computer science; Delay effects; Educational institutions; Equations; Neurons; Perturbation methods; Stability analysis; Taylor series; Vehicle dynamics; Hopf Bifurcation; Periodic stimuli; Time delay; averaging method; periodic motion;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
Type :
conf
DOI :
10.1109/GRC.2008.4664652
Filename :
4664652
Link To Document :
بازگشت