Title :
Review of power flow studies on distribution network with distributed generation
Author :
Balamurugan, K. ; Srinivasan, Dipti
Author_Institution :
Nat. Univ. of Singapore, Singapore, Singapore
Abstract :
With the perspective of the emerging Smart grid concept, tomorrow´s distribution network will require repeated and fast load flow solution that must be resolved as efficiently as possible in some applications particularly in distribution planning, automation, optimization of power system etc. This necessitates the continued search for accurate and fast power flow algorithms for distribution network. This paper presents a review and summary of research developments in the field of distribution network power flow which is an essential part of development of effective smart distribution system analysis tools. Different solution strategies including the modeling of distributed generation sources involved in the distribution network power flow are presented. The solution techniques of distribution network power flow problem are classified under two major reference groups namely phase frame approach and sequence frame approach. The Forward and Backward sweep method, Compensation method, Implicit Gauss method, modified Newton or Newton like methods or any other miscellaneous power flow methods are the different algorithms used under each reference frame. Attention is given to the techniques to deal with balanced/unbalanced, radial/weakly meshed/mesh configuration, with or without Distributed Generation (DG) and convergence criteria.
Keywords :
Newton method; distributed power generation; load flow; optimisation; power distribution planning; smart power grids; backward sweep method; compensation method; distributed generation sources; distribution network; distribution network power flow; distribution planning; forward sweep method; implicit Gauss method; load flow solution; miscellaneous power flow methods; modified Newton methods; power flow studies; power system optimization; radial-weakly meshed-mesh configuration; sequence frame approach; smart distribution system analysis tools; smart grid concept; Admittance; Algorithm design and analysis; Convergence; Equations; Jacobian matrices; Load flow;
Conference_Titel :
Power Electronics and Drive Systems (PEDS), 2011 IEEE Ninth International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-61284-999-7
Electronic_ISBN :
2164-5256
DOI :
10.1109/PEDS.2011.6147281