DocumentCode :
326213
Title :
Retrieval of tropospheric instability from Meteosat Second Generation data
Author :
Fuhrhop, Rolf ; Simmer, Clemens ; Thiemann, Claudia ; Kerkmann, Jochen
Author_Institution :
Appl. Meteorol. & Remote Sensing, Inst. of Marine Sci., Kiel, Germany
Volume :
2
fYear :
1998
fDate :
6-10 Jul 1998
Firstpage :
716
Abstract :
Investigates the performance of neural network algorithms to sense tropospheric instability with the future Meteosat Second Generation satellite. Three algorithm approaches are developed with `Europa Modell´ data: (i) global algorithms (ii) monthly algorithms, and (iii) so called `on-line´ algorithms which use recently observed data for training. All three approaches retrieve the surface K-index, a modified surface K-index and the precipitable water content with high performance, where the best performance is achieved with the `on-line´ algorithms. Investigations using `Lokal Modell´ data of a limited sample size show a better representation of the tropospheric instability and an increased retrieval performance, especially for other instability indices
Keywords :
atmospheric humidity; atmospheric movements; geophysical signal processing; neural nets; remote sensing; storms; troposphere; Europa Modell; Lokal Modell; Meteosat Second Generation data; global algorithms; instability indices; modified surface K-index; monthly algorithms; neural network algorithms; on-line algorithms; precipitable water content; surface K-index; tropospheric instability; Atmospheric modeling; Computational modeling; Information retrieval; Neural networks; Remote sensing; Satellite broadcasting; Spatial resolution; Stability; Temperature; Weather forecasting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International
Conference_Location :
Seattle, WA
Print_ISBN :
0-7803-4403-0
Type :
conf
DOI :
10.1109/IGARSS.1998.699560
Filename :
699560
Link To Document :
بازگشت