DocumentCode :
3262312
Title :
Modelling imprecise and scattered multidimensional data using granular data compression and multiple granularity modelling
Author :
Panoutsos, George ; Mahfouf, Mahdi
Author_Institution :
Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
512
Lastpage :
517
Abstract :
In this paper a systematic modelling approach is presented, involving two algorithmic procedures: a) a data pre-processing algorithm using granular computing and statistics and b) a granular neural-fuzzy ensemble network consisting of multiple granularity models. Both algorithmic procedures aim to reduce the data and modelling scatter often found in real industrial data. The study focuses on predicting the mechanical property of heat treated steel, in particular Charpy Toughness. This mechanical property yields high data scatter caused by unknown underlying fractural dynamics. The proposed methodology is shown to successfully model the process under investigation using a real industrial data set.
Keywords :
artificial intelligence; data compression; fuzzy neural nets; data preprocessing algorithm; fractural dynamics; granular computing; granular data compression; granular neural-fuzzy ensemble network; heat treated steel; multiple granularity modelling; scattered multidimensional data; Accuracy; Cognition; Data compression; Data engineering; Humans; Mechanical factors; Multidimensional systems; Noise measurement; Scattering; Steel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
Type :
conf
DOI :
10.1109/GRC.2008.4664723
Filename :
4664723
Link To Document :
بازگشت