Title :
Multicoloring the Mycielskian of Graphs
Author :
Ren, Guanfeng ; Bu, Yuehua
Author_Institution :
Dept. of Math., Zhejiang Normal Univ., Jinhua
Abstract :
A k-fold coloring of a graph G is an assignment of k distinct colors to each vertex of G so that adjacent vertices receive no colors in common. The k-th chromatic number of G,denote by chik(G), is the smallest number of colors needed to give G a k-fold coloring. Let mup(G) denote the p-Mycielskian of G. In this paper, we show that chik(mu(Wn)) = 3k + [k/3] + 1 (n is even, n ges 2k + 2 > 4). Moreover, we investigate the k-th chromatic number of Mycielskians of bipartite graph. Finally, we determine the values of chik(mup(G)) (chi(G) = omega(G) = n ges 3).
Keywords :
graph colouring; number theory; Mycielskian graph multicoloring; bipartite graph; graph vertex coloring; k-fold graph coloring; k-th chromatic number; All-optical networks; Bipartite graph; Frequency; Land mobile radio cellular systems; Mathematics; WDM networks; Wavelength assignment; Wavelength division multiplexing; Wavelength routing;
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
DOI :
10.1109/GRC.2008.4664727