DocumentCode :
3263140
Title :
Towards efficient privacy-preserving collaborative recommender systems
Author :
Zhan, Justin ; Wang, I-Cheng ; Hsieh, Chia-Lung ; Hsu, Tsan-Sheng ; Liau, Churn-Jung ; Wang, Da-Wei
Author_Institution :
Heinz Sch., Carnegie Mellon Univ., Pittsburgh, PA
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
778
Lastpage :
783
Abstract :
Recommender systems use various types of information to help customers find products of personalized interest. To increase the usefulness of recommender systems in certain circumstances, it could be desirable to merge recommender system databases between companies, thus expanding the data pool. This can lead to privacy disclosure hazards that this paper addresses by constructing an efficient privacy-preserving collaborative recommender system based on the scalar product protocol.
Keywords :
Web sites; data privacy; electronic commerce; groupware; information filtering; information filters; security of data; collaborative recommender systems; recommender system databases; scalar product protocol; Collaboration; Cryptography; Databases; Filtering; Hazards; Information science; Marketing and sales; Privacy; Protocols; Recommender systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
Type :
conf
DOI :
10.1109/GRC.2008.4664769
Filename :
4664769
Link To Document :
بازگشت