DocumentCode :
3263354
Title :
Using genetic algorithms for non-negative least error minimal norm solutions
Author :
Nikolopoulos, Panagiotis ; Nikolopoulos, Chris
Author_Institution :
Ameritech Services, Chicago, IL, USA
fYear :
35765
fDate :
8-10 Dec1997
Firstpage :
199
Lastpage :
203
Abstract :
We consider non negative solutions of a system of m real linear equations, Ax=b, in n unknowns which minimize the residual error when R m is equipped with a strictly convex norm. Out of these solutions we seek the one which is of the least norm for a strictly convex and smooth norm on Rn. A hybrid genetic numerical algorithm for accomplishing this is given. The same problem is then solved using a purely genetic algorithm approach. The algorithms are tested for the lP norms (1<p<∞)
Keywords :
genetic algorithms; linear algebra; minimisation; search problems; genetic algorithms; hybrid genetic numerical algorithm; lP norms; non negative least error minimal norm solutions; purely genetic algorithm approach; real linear equations; residual error minimization; smooth norm; strictly convex norm; Computer errors; Computer science; Equations; Genetic algorithms; Genetic mutations; Machine learning; Machine learning algorithms; Robustness; State-space methods; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Systems, 1997. IIS '97. Proceedings
Conference_Location :
Grand Bahama Island
Print_ISBN :
0-8186-8218-3
Type :
conf
DOI :
10.1109/IIS.1997.645218
Filename :
645218
Link To Document :
بازگشت