DocumentCode :
3269088
Title :
Ge concentration profiles and defect characterization in high Ge content Si/SiGe heterostructure
Author :
Lu, Jinggang ; Zhao, Wenjun ; Rozgonyi, George A. ; Liu, Zhenxian ; Wise, Rick
Author_Institution :
Dept. of Mater. Sci. & Eng., North Carolina State Univ., Raleigh, NC, USA
Volume :
3
fYear :
2004
fDate :
18-21 Oct. 2004
Firstpage :
2131
Abstract :
Defect reduction in high Ge content Si/SiGe heterostructures is a critically important issue for the successful application of strained Si ULSI technology, considering that a high Ge content is needed for larger and more symmetric enhancements of electron and hole mobilities, and the fact that the defect density usually increases with increasing Ge content. In this paper, two wafers with 30 and 41% target Ge contents, respectively, were characterized by Raman microspectroscopy performed on beveled surfaces, cross-sectional TEM, and preferential etching/Nomarski optical microscopy. It was found that the 41% wafer is continuously graded and the 30% wafer is stepwise graded. This was further confirmed by TEM. Preferential etching shows that the density of threading dislocations in the 30% Ge wafer is approximately 1 to 2×105 cm-2, which is about one order lower than that in the 41% Ge sample. Thus, the stepwise grading structure appears to have a positive impact on threading dislocation reduction. Finally, in addition to a cross-grid misfit array of dislocations, truncated line structures were observed in the 30% Ge sample.
Keywords :
Ge-Si alloys; Raman spectroscopy; dislocation density; electron mobility; elemental semiconductors; hole mobility; optical microscopy; semiconductor heterojunctions; semiconductor materials; silicon; transmission electron microscopy; Nomarski optical microscopy; Si-SiGe; beveled surface Raman microspectroscopy; concentration profiles; continuously graded wafer; cross-grid misfit dislocations array; cross-sectional TEM; defect characterization; defect density; defect reduction; electron mobility; heterostructures; hole mobility; preferential etching; stepwise graded wafer; strained ULSI technology; threading dislocation density; truncated line structures; Capacitive sensors; Etching; Germanium silicon alloys; Lenses; Optical microscopy; Optical surface waves; Silicon germanium; Spectroscopy; Tensile strain; Transmission electron microscopy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on
Print_ISBN :
0-7803-8511-X
Type :
conf
DOI :
10.1109/ICSICT.2004.1435264
Filename :
1435264
Link To Document :
بازگشت