DocumentCode :
3269515
Title :
A self-organizing maps algorithm for gene expression data clustering based on feature´s distribution
Author :
Cheng, Huijie ; Zhang, Guoyin ; Lou, Songjiang
Author_Institution :
Coll. of Comput. Sci. & Technol., Harbin Eng. Univ., Harbin, China
fYear :
2011
fDate :
18-20 Jan. 2011
Firstpage :
307
Lastpage :
310
Abstract :
In order to solve the problem that traditional SOM algorithm simply regards all the features as equal importance, a novel similarity computation method is proposed in this paper. This method uses feature´s intra-cluster distribution and inter-cluster distribution to evaluate different features with different weights, and integrate features´ weights in similarity computation. Experiment results demonstrate that this novel similarity computation method can effectively improve precision on gene expression data clustering.
Keywords :
biology computing; data handling; pattern clustering; self-organising feature maps; SOM algorithm; feature evaluation; feature inter-cluster distribution; feature intra-cluster distribution; gene expression data clustering; self-organizing maps algorithm; similarity computation method; Breast cancer; Heart; Neurons; Self organizing maps; feature´s importance evaluation; gene clustering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computer Control (ICACC), 2011 3rd International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-1-4244-8809-4
Electronic_ISBN :
978-1-4244-8810-0
Type :
conf
DOI :
10.1109/ICACC.2011.6016420
Filename :
6016420
Link To Document :
بازگشت