DocumentCode :
3269592
Title :
Parameter estimation of alpha-stable distributions based on MCMC
Author :
Hao Yan-ling ; Shan Zhi-ming ; Shen Feng ; Lv Dong-ze
Author_Institution :
Coll. of Autom., Harbin Eng. Univ., Harbin, China
fYear :
2011
fDate :
18-20 Jan. 2011
Firstpage :
325
Lastpage :
327
Abstract :
Theα -stable distribution is a very flexible tool to model NonGaussian data. Stable distributions can allow for modeling infinite variance, skewness and heavy tails, but gives rise to inferential problems related to the estimation of the stable distribution parameters. In this work, we study the estimation ofα -stable distributions using numerical Bayesian sampling techniques such as Markov chain Monte Carlo (MCMC), which can simultaneously estimate the four parameters of the model with good performance. Metropolis-Hastings algorithm is used to update the parameters ofα -stable distribution at every iteration. The simulation results show that our estimation method is capable of estimating all the parameters accurately.
Keywords :
Markov processes; Monte Carlo methods; belief networks; parameter estimation; signal processing; α -stable distribution; MCMC; Markov chain Monte Carlo; alpha-stable distributions; infinite variance; nonGaussian data; numerical Bayesian sampling techniques; parameter estimation; signal processing; Alpha Stable distributions; MCMC; Metropolis-Hastings algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computer Control (ICACC), 2011 3rd International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-1-4244-8809-4
Electronic_ISBN :
978-1-4244-8810-0
Type :
conf
DOI :
10.1109/ICACC.2011.6016424
Filename :
6016424
Link To Document :
بازگشت