DocumentCode :
3269824
Title :
EEG signals classification for brain computer interfaces based on Gaussian process classifier
Author :
Wang, Boyu ; Wan, Feng ; Mak, Peng Un ; Mak, Pui In ; Vai, Mang I.
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Macau, Macau, China
fYear :
2009
fDate :
8-10 Dec. 2009
Firstpage :
1
Lastpage :
5
Abstract :
Classification of electroencephalogram (EEG) is a crucial issue for EEG-based brain computer interface (BCI) system. In this paper, the performances of the Gaussian process classifier (GPC) for three different categories of EEG signals, i.e. steady state visually evoked potential (SSVEP), motor imagery and finger movement EEG data, are investigated. The main purpose of this paper is to explore the practicability of GPC for EEG signals classification of different tasks. Compared with some commonly employed algorithms, the GPC achieves similar or better performances. Furthermore, the probabilistic output provided by the GPC can also be of great benefit to the decision making for both online and offline EEG analysis.
Keywords :
Gaussian processes; brain-computer interfaces; electroencephalography; medical signal processing; signal classification; EEG signals classification; Gaussian process classifier; brain computer interfaces; electroencephalogram; finger movement EEG data; motor imagery; steady state visually evoked potential; Brain computer interfaces; Brain modeling; Decision making; Electroencephalography; Fingers; Gaussian processes; Pattern classification; Steady-state; Support vector machines; Usability; Gaussian process classifier (GPC); brain computer interface (BCI); electroencephalogram (EEG);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on
Conference_Location :
Macau
Print_ISBN :
978-1-4244-4656-8
Electronic_ISBN :
978-1-4244-4657-5
Type :
conf
DOI :
10.1109/ICICS.2009.5397570
Filename :
5397570
Link To Document :
بازگشت