DocumentCode :
3271493
Title :
Parameter estimation in dynamic biochemical systems based on adaptive Particle Swarm Optimization
Author :
Liu, Mingshou ; Shin, Dongil ; Kang, Hwan Il
Author_Institution :
Dept. of Chem. Eng., Myongji Univ., Yongin, South Korea
fYear :
2009
fDate :
8-10 Dec. 2009
Firstpage :
1
Lastpage :
5
Abstract :
We consider the problem of large-scale parameter estimations in nonlinear dynamic models of biochemical systems. In this work, the particle swarm optimization (PSO) method is adapted for estimation of model parameters in highly nonlinear, large-scale metabolic networks in systems biology. PSO is a recently developed novel metaheuristic optimization method. And with the modification of the essential parameters to a nonlinear changing strategy, the convergence speed of the proposed adaptive PSO has been accelerated. This project also describes the comparisons of different optimization methods´ performances to understand how PSO may provide the best results.
Keywords :
biochemistry; parameter estimation; particle swarm optimisation; dynamic biochemical systems; large-scale metabolic networks; metaheuristic optimization method; nonlinear dynamic models; parameter estimation; particle swarm optimization; systems biology; Acceleration; Adaptive systems; Biochemistry; Biological system modeling; Convergence; Large-scale systems; Optimization methods; Parameter estimation; Particle swarm optimization; Systems biology; Escherichia coli; Particle Swarm Optimization; nonlinear dynamic biochemical system; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on
Conference_Location :
Macau
Print_ISBN :
978-1-4244-4656-8
Electronic_ISBN :
978-1-4244-4657-5
Type :
conf
DOI :
10.1109/ICICS.2009.5397662
Filename :
5397662
Link To Document :
بازگشت