DocumentCode :
3272943
Title :
A statistically sparse decomposition principle for underdetermined blind source separation
Author :
Xiao, Ming ; Xie, Shengli ; Fu, Yuli
fYear :
2005
fDate :
13-16 Dec. 2005
Firstpage :
165
Lastpage :
168
Abstract :
The underdetermined case in blind source separation, that is, separation of n sources from m (m1 -norm solution. Second, we present a new sparse representation based on second order statistic, which is called statistically sparse decomposition principle (SSDP). Finally, speech signal experiments demonstrate the performance of the approach.
Keywords :
blind source separation; speech processing; statistical analysis; blind source separation; second order statistic; sparse representation; statistically sparse decomposition principle; Blind source separation; Educational institutions; Independent component analysis; Laplace equations; Matrix decomposition; Noise robustness; Source separation; Sparse matrices; Speech; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Signal Processing and Communication Systems, 2005. ISPACS 2005. Proceedings of 2005 International Symposium on
Print_ISBN :
0-7803-9266-3
Type :
conf
DOI :
10.1109/ISPACS.2005.1595372
Filename :
1595372
Link To Document :
بازگشت