Title :
On a class of finite geometry low density parity check codes
Author :
Lin, Shu ; Tang, Heng ; Kou, Yu
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA
Abstract :
A new class of geometry LDPC codes is presented which contains the class of Kou-Lin-Fossorier codes (see IEEE International Symposium on Information Theory, p.200, June 2000) as a subclass. If the code construction is based on Euclidean geometry (EG) and projective geometry (PG) over finite fields, we obtain four classes of LDPC codes, namely: (1) type-I EG-LDPC codes; (2) type-II EG-LDPC codes; (3) type-I PG-LDPC codes; and (4) type-II PG-LDPC codes
Keywords :
Galois fields; error correction codes; geometric codes; Euclidean geometry; LDPC codes; code construction; finite fields; finite geometry low density parity check codes; projective geometry; type-I EG-LDPC codes; type-I PG-LDPC codes; type-II EG-LDPC codes; type-II PG-LDPC codes; Computational geometry; Displays; Galois fields; Null space; Parity check codes; Sparse matrices;
Conference_Titel :
Information Theory, 2001. Proceedings. 2001 IEEE International Symposium on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-7123-2
DOI :
10.1109/ISIT.2001.935865