DocumentCode :
327454
Title :
Homogenization theory and impure superconductors
Author :
Pankratov, Leonid
Author_Institution :
Math. Div., Inst. for Low Temp. Phys. & Eng., Kharkov, Ukraine
Volume :
1
fYear :
1998
fDate :
2-5 Jun 1998
Firstpage :
260
Abstract :
The paper is devoted to the homogenization of the Neumann boundary value problem for the stationary and nonstationary Ginzburg-Landau heat equations in a porous medium consisting of a melange of a superconductor and a dielectric with complicated microstructure
Keywords :
Ginzburg-Landau theory; algebra; boundary-value problems; dirty superconductors; Neumann boundary value problem; complicated microstructure; dielectric; homogenization theory; impure superconductors; nonstationary Ginzburg-Landau heat equations; porous medium; stationary Ginzburg-Landau heat equations; Boundary conditions; Boundary value problems; Dielectrics; Differential equations; Gold; Microstructure; Nonlinear equations; Partial differential equations; Superconductivity; Temperature;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mathematical Methods in Electromagnetic Theory, 1998. MMET 98. 1998 International Conference on
Conference_Location :
Kharkov
Print_ISBN :
0-7803-4360-3
Type :
conf
DOI :
10.1109/MMET.1998.709742
Filename :
709742
Link To Document :
بازگشت