DocumentCode :
3276346
Title :
A topological property of hypercubes: node disjoint paths
Author :
Madhavapeddy, Seshu ; Sudborough, I. Hal
Author_Institution :
Texas Univ., Richardson, TX, USA
fYear :
1990
fDate :
9-13 Dec 1990
Firstpage :
532
Lastpage :
539
Abstract :
A graph G=(V,E) (|V|⩾2n) satisfies property Pn if given any 2n distinct vertices s1,s 2, . . ., sn, g1,g2, . . ., gn V, there exist n node disjoint paths p i[si, gi] (i =1, . . ., n) in G such that pi is a path from si to gi. A necessary (but not sufficient) condition for any graph to satisfy Pn is that it be (2n-1)-connected [MW]. The authors prove the optimal result that the hypercube of dimension k , Q(k) (k⩾2n-1), satisfies Pn(n⩾3). The proof is constructive and yields an O(n3 log n) algorithm for finding up to [n/2] node disjoint paths in Q(n ) (n⩾4) between mutually disjoint source-goal node pairs
Keywords :
computational complexity; graph theory; hypercube networks; network topology; optimisation; parallel algorithms; computational complexity; disjoint connecting path; graph; hypercubes; node disjoint paths; optimisation; parallel algorithms; topological property; Algorithm design and analysis; Computer networks; Computer science; Concurrent computing; Hypercubes; Joining processes; Multiprocessor interconnection networks; Parallel algorithms; Routing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Processing, 1990. Proceedings of the Second IEEE Symposium on
Conference_Location :
Dallas, TX
Print_ISBN :
0-8186-2087-0
Type :
conf
DOI :
10.1109/SPDP.1990.143599
Filename :
143599
Link To Document :
بازگشت