DocumentCode :
327648
Title :
Kohonen networks and the influence of training on data structures
Author :
Morlini, Isabella
fYear :
1998
fDate :
31 Aug-2 Sep 1998
Firstpage :
370
Lastpage :
379
Abstract :
The Kohonen feature map is applied to the so-called two-spiral problem. Even if this network is unsupervised, the results indicate that the ability to classify or visualize the data structure depends on the training parameters. The example shows, therefore, that the network self-organization can be limited and the choices of the researcher can strongly affect the network output
Keywords :
data structures; learning (artificial intelligence); pattern classification; self-organising feature maps; Kohonen feature map; Kohonen networks; data structures; network self-organization; training; two-spiral problem; Algorithm design and analysis; Clustering algorithms; Convergence; Data structures; Data visualization; Euclidean distance; Multidimensional systems; Neural networks; Partitioning algorithms; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop
Conference_Location :
Cambridge
ISSN :
1089-3555
Print_ISBN :
0-7803-5060-X
Type :
conf
DOI :
10.1109/NNSP.1998.710667
Filename :
710667
Link To Document :
بازگشت