DocumentCode :
3277442
Title :
Improving Gallager´s upper bound on Huffman codes redundancy
Author :
Shen, Jia-Pei ; Gill, John
Author_Institution :
Inf. Syst. Lab., Stanford Univ., CA, USA
fYear :
2001
fDate :
2001
Firstpage :
218
Abstract :
We propose the first single bound that supersedes Gallager´s (1978) upper bound on the redundancy of binary Huffman codes with the given largest source symbol probability ranging from 0 to 0.5. We define the linear logarithm and linear logarithm entropy. We find the maximal difference between the linear and the ordinary logarithms. We prove that the “redundancy” of a binary Huffmann code with respect to the linear logarithm entropy is no more than the largest source symbol probability. We therefore establish a better upper bound than Gallager´s on the redundancy of binary Huffman codes
Keywords :
Huffman codes; binary codes; entropy; probability; redundancy; Gallager´s upper bound; Huffman codes redundancy; binary Huffman codes; linear logarithm; linear logarithm entropy; source symbol probability; Entropy; Image coding; Notice of Violation; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2001. Proceedings. 2001 IEEE International Symposium on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-7123-2
Type :
conf
DOI :
10.1109/ISIT.2001.936081
Filename :
936081
Link To Document :
بازگشت