DocumentCode :
3277748
Title :
Two-stage denoising method for hyperspectral images combining KPCA and total variation
Author :
Wenzhi Liao ; Aelterman, Jan ; Hiep Quang Luong ; Pizurica, Aleksandra ; Philips, Wilfried
Author_Institution :
TELIN-IPI-iMinds, Ghent Univ., Ghent, Belgium
fYear :
2013
fDate :
15-18 Sept. 2013
Firstpage :
2048
Lastpage :
2052
Abstract :
This paper presents a two-stage denoising method for hyper-spectral image (HSI) by combining kernel principal component analysis (KPCA) and total variation (TV). In the first stage, we use KPCA denoising to reduce spectrally uncorre-lated noise. In the second stage, the information content is largely separated from the remaining noise by means of principal component analysis (PCA). The remaining noise is then efficiently removed by fast primal-dual TV denoising in low-energy PCA channels. Experimental results on simulated and real HSIs are very encouraging.
Keywords :
geophysical image processing; hyperspectral imaging; image denoising; principal component analysis; remote sensing; HSI; KPCA denoising; fast primal-dual TV denoising; hyperspectral image; hyperspectral images; information content; kernel principal component analysis; low-energy PCA channels; spectrally uncorrelated noise reduction; total variation; two-stage denoising method; Hyperspectral images; classification; denoising; kernel principal component analysis; total variation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2013 20th IEEE International Conference on
Conference_Location :
Melbourne, VIC
Type :
conf
DOI :
10.1109/ICIP.2013.6738422
Filename :
6738422
Link To Document :
بازگشت