Title :
Efficient top-k support documents for expert search using relationship in a social network
Author :
Chen, Ji-meng ; Liu, Jie ; Huang, Ya-lou ; Lu, Min
Author_Institution :
Coll. of Inf. Technol. Sci., Nankai Univ., Tianjin, China
Abstract :
Searching experts for helping make decision in an organization is an effective solution. Traditional approaches of expert search only use the expertise information of a single expert and ignore relationship between persons. Recently some research shows that relationship between persons is also helpful. However, most approaches cost much time and energy to establish expertise profiles for all experts and extract varies of social relationship between them. In this paper, we propose an approach which can not only efficiently collect expertise information of each expert through top-k support documents, but also use effective co-occurrence relationship between expert candidates to rank the target experts. The use of co-occurrence relationship aims to quickly build a social network. And it also enhances reliability of relevance between expert candidates and a given topic, and improves accuracy of recommended experts. Experimental results on W3C collection show that our approach outperforms the baseline approaches.
Keywords :
Internet; document handling; search problems; social networking (online); efficient top-k support documents; expert search; expertise information; social network; social relationship; Analytical models; Cybernetics; Data mining; Electronic mail; Machine learning; Search problems; Social network services; Co-occurrence Relationship; Expert Search; Social Network; Top-k support documents;
Conference_Titel :
Machine Learning and Cybernetics (ICMLC), 2011 International Conference on
Conference_Location :
Guilin
Print_ISBN :
978-1-4577-0305-8
DOI :
10.1109/ICMLC.2011.6016964