DocumentCode :
3278901
Title :
Document image binarization via one-pass local classification
Author :
Haitao Xue ; Bouman, Charles A. ; Bauer, Pavol ; Depalov, D. ; Bradburn, Brent M. ; Allebach, Jan P.
Author_Institution :
Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
fYear :
2013
fDate :
15-18 Sept. 2013
Firstpage :
2299
Lastpage :
2303
Abstract :
Binarization algorithms are used to create a binary representation of a raster document image, typically with the intent of identifying text and separating it from background content. In this paper, we propose a binarization algorithm via one-pass local classification. The algorithm first generates the initial binarization results by local thresholding, then corrects the results by a one-pass local classification strategy, followed by the process of component inversion. The experimental results demonstrate that our algorithm achieves a somewhat lower binarization error rate than the state-of-the-art algorithm COS [1], while requiring significantly less computation.
Keywords :
document image processing; image classification; binarization error rate; component inversion; document image binarization; one-pass local classification; binarization; local classification; one-pass;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2013 20th IEEE International Conference on
Conference_Location :
Melbourne, VIC
Type :
conf
DOI :
10.1109/ICIP.2013.6738474
Filename :
6738474
Link To Document :
بازگشت