DocumentCode :
327941
Title :
An unsupervised clustering method using the entropy minimization
Author :
Palubinskas, Gintautas ; Descombes, Xavier ; Kruggel, Frithjof
Author_Institution :
Deutsches Zentrum fur Luft- und Raumfahrt (DLR) e.V., Wessling, Germany
Volume :
2
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
1816
Abstract :
We address the problem of unsupervised clustering using a Bayesian framework. The entropy is considered to define a priori and enables one to overcome the problem of defining a priori the number of clusters and an initialization of their centers. A deterministic algorithm derived from the standard k-means algorithm is proposed and compared with simulated annealing algorithms. The robustness of the proposed method is shown on a magnetic resonance images database containing 65 volumetric (3D) images
Keywords :
Bayes methods; image classification; magnetic resonance imaging; minimum entropy methods; optimisation; probability; Bayes method; Gaussian likelihood; deterministic algorithm; entropy minimization; image classification; k-means algorithm; magnetic resonance images; probability; simulated annealing; unsupervised clustering; Bayesian methods; Clustering algorithms; Clustering methods; Entropy; Histograms; Level set; Minimization methods; Neuroscience; Robustness; Simulated annealing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.712082
Filename :
712082
Link To Document :
بازگشت