DocumentCode :
3279677
Title :
A comparison of least squares algorithms for estimating Markov parameters
Author :
Fledderjohn, M.S. ; Holzel, M.S. ; Palanthandalam-Madapusi, Harish J. ; Fuentes, R.J. ; Bernstein, D.S.
Author_Institution :
Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2010
fDate :
June 30 2010-July 2 2010
Firstpage :
3735
Lastpage :
3740
Abstract :
The purpose of this work is to compare model structures and identification algorithms for estimating Markov parameters in the presence of uncorrelated and correlated input, process, and output noise. We consider several least-squares variants with ARX and μ-Markov model structures, which are compared with white noise identification signals.
Keywords :
Markov processes; autoregressive processes; least squares approximations; parameter estimation; signal processing; white noise; μ-Markov model structure; ARX model; Markov parameter estimation; identification algorithm; least squares algorithm; output noise; white noise identification signal; Aerospace engineering; Least squares approximation; Least squares methods; Linear systems; Noise figure; Parameter estimation; Signal processing; Signal to noise ratio; State-space methods; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2010
Conference_Location :
Baltimore, MD
ISSN :
0743-1619
Print_ISBN :
978-1-4244-7426-4
Type :
conf
DOI :
10.1109/ACC.2010.5530673
Filename :
5530673
Link To Document :
بازگشت