DocumentCode :
3280846
Title :
A spatial-temporal constraint-based action recognition method
Author :
Tingting Han ; Hongxun Yao ; Yanhao Zhang ; Pengfei Xu
Author_Institution :
Harbin Inst. of Technol., Harbin, China
fYear :
2013
fDate :
15-18 Sept. 2013
Firstpage :
2767
Lastpage :
2771
Abstract :
In this paper, we propose a spatial-temporal constraint-based action recognition method, in which two actions are compared by both the appearance features and the spatial-temporal structures. To represent the appearance information in videos, we utilize a random quantization method to obtain a more precise BoW-based representation. To calculate the similarity of two videos, we match the quantized interest point sets and map the matched pairs into the spatial-temporal offset space to compare the similarities of spatial-temporal structures. We leverage the KNN model to classify the actions. The experiment results on both KTH action dataset and YouTube action dataset demonstrate the effectiveness of our proposed method on action recognition.
Keywords :
image recognition; image representation; visual databases; BoW-based representation; KNN model; KTH action dataset; YouTube action dataset; appearance features; random quantization method; spatial-temporal constraint-based action recognition method; spatial-temporal offset space; Action recognition; random BoW; spatial-temporal constraint; spatial-temporal offset;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2013 20th IEEE International Conference on
Conference_Location :
Melbourne, VIC
Type :
conf
DOI :
10.1109/ICIP.2013.6738570
Filename :
6738570
Link To Document :
بازگشت