DocumentCode :
3282053
Title :
Optimal parameter estimation of the Izhikevich single neuron model using experimental inter-spike interval (ISI) data
Author :
Kumar, G. ; Aggarwal, V. ; Thakor, N.V. ; Schieber, M.H. ; Kothare, M.V.
Author_Institution :
Dept. of Chem. Eng., Lehigh Univ., Bethlehem, PA, USA
fYear :
2010
fDate :
June 30 2010-July 2 2010
Firstpage :
3586
Lastpage :
3591
Abstract :
We propose to use the Izhikevich single neuron model to represent a motor cortex neuron for studying a control-theoretic perspective of a neuroprosthetic system. The problem of estimating model parameters is addressed when the only available data from intracortical recordings of a neuron are the Inter-Spike Intervals (ISIs). Non-linear constrained and unconstrained optimization problems are formulated to estimate model parameters as well as synaptic inputs using ISIs data. The primal-dual interior-point method is implemented to solve the constrained optimization problem. Reasonable model parameters are estimated by solving these optimization problems which may serve as a template for studying and developing a model of ensemble cortical neurons for neuroprosthesis applications.
Keywords :
control theory; neural nets; optimisation; parameter estimation; prosthetics; Izhikevich single neuron model; control theoretic perspective; interspike interval data; motor cortex neuron; neuroprosthetic system; optimal parameter estimation; optimization problems; Biomedical measurements; Brain modeling; Constraint optimization; Intersymbol interference; Neural prosthesis; Neurons; Open loop systems; Optimal control; Parameter estimation; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2010
Conference_Location :
Baltimore, MD
ISSN :
0743-1619
Print_ISBN :
978-1-4244-7426-4
Type :
conf
DOI :
10.1109/ACC.2010.5530803
Filename :
5530803
Link To Document :
بازگشت