DocumentCode :
3282449
Title :
Improved image quality measures using ordered histograms
Author :
Van der Weken, Dietrich ; Nachtegael, Mike ; Kerre, Etienne
Author_Institution :
Fuzziness & Uncertainty Modelling Res. Unit, Ghent Univ., Gent, Belgium
fYear :
2004
fDate :
29 Sept.-1 Oct. 2004
Firstpage :
67
Lastpage :
70
Abstract :
In this paper, we have shown how the fuzzy set theory is used in establishing measures for image quality evaluation. Objective quality measures or measures of comparison are of great importance in the field of image processing. These measures serve as a tool to evaluate and to compare different algorithms designed to solve problems, such as noise reduction, deblurring, compression, etc. It is well-known that classical quality measures, such as the MSE (mean square error) or the PSNR (peak signal to noise ratio), do not always correspond to human visual observations. Therefore, several researchers are - and have been - looking for new quality measures, better adapted to human perception. In this paper, we show how the neighbourhood-based similarity measures can be combined with similarity measures for histogram comparison in order to improve the perceptive behaviour of these similarity measures.
Keywords :
fuzzy set theory; image processing; mean square error methods; fuzzy set theory; image quality measure; mean square error; neighbourhood-based similarity measure; ordered histogram; peak signal to noise ratio; Algorithm design and analysis; Fuzzy set theory; Histograms; Humans; Image coding; Image processing; Image quality; Noise measurement; Noise reduction; PSNR;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Signal Processing, 2004 IEEE 6th Workshop on
Print_ISBN :
0-7803-8578-0
Type :
conf
DOI :
10.1109/MMSP.2004.1436418
Filename :
1436418
Link To Document :
بازگشت