DocumentCode :
328293
Title :
Learning algorithm for nearest-prototype classifiers
Author :
Urahama, Kiichi ; Nagao, Takeshi
Author_Institution :
Dept. of Comput. Sci. & Electron., Kyushu Inst. of Technol., Fukuoka, Japan
Volume :
1
fYear :
1993
fDate :
25-29 Oct. 1993
Firstpage :
585
Abstract :
Incremental learning algorithms are presented for nearest prototype (NP) classifiers. Fuzzification of the 1-NP and K-NP classification rules provides an explicit analytical expression of the membership of data to categories. This expression enables formulation of the protoype placement problem as mathematical programming which can be solved by using a gradient descent algorithm. In addition to the learning algorithm, analog electronic circuits are configured, which implement the 1-NP and k-NP classifiers.
Keywords :
analogue processing circuits; fuzzy neural nets; learning (artificial intelligence); mathematical programming; pattern classification; 1-NP classifiers; analog electronic circuits; fuzzification; fuzzy neural nets; gradient descent algorithm; k-NP classifiers; mathematical programming; nearest-prototype classifiers; Classification algorithms; Computer science; Convergence; Electronic circuits; Entropy; Equations; Mathematical programming; Prototypes; Vector quantization; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings of 1993 International Joint Conference on
Print_ISBN :
0-7803-1421-2
Type :
conf
DOI :
10.1109/IJCNN.1993.713983
Filename :
713983
Link To Document :
بازگشت