Title :
Indoor localization: Automatically constructing today´s radio map by iRobot and RFIDs
Author :
Yeh, Lun-Wu ; Hsu, Ming-Shiou ; Lee, Yueh-Feng ; Tseng, Yu-Chee
Author_Institution :
Dept. of Comput. Sci., Nat. Chiao-Tung Univ., Hsinchu, Taiwan
Abstract :
For outdoor localization, GPS already provides a satisfactory solution. For indoor localization, however, a globally usable solution is still missing. One promising direction that is proposed recently is the fingerprinting-based solution. It involves a training phase to collect the radio signal strength (RSS) patterns in fields where localization is needed into a database (called radio map). The radio signal could be from WiFi access points, GSM base stations, or other RF-based networks. Then, during the positioning phase, an object which is interested in its own location can collect its current RSS pattern and compare it against the radio map established in the training phase to identify its possible location. We present an interesting system based a robot and numerous cheap RFID tags deployed on the ground to automate the training process and, more importantly, to frequently update radio maps to reflect the current RSS patterns. This not only significantly reduces human labors but also improves positioning accuracy.
Keywords :
indoor radio; radiofrequency identification; robots; GPS; RFID; fingerprinting-based solution; iRobot; indoor localization; radio map; radio signal strength; Computer science; Databases; Femtocell networks; Fingerprint recognition; GSM; Global Positioning System; RFID tags; Radiofrequency identification; Robot sensing systems; Robotics and automation; RFID; indoor positioning; localization; pervasive computing; robot;
Conference_Titel :
Sensors, 2009 IEEE
Conference_Location :
Christchurch
Print_ISBN :
978-1-4244-4548-6
Electronic_ISBN :
1930-0395
DOI :
10.1109/ICSENS.2009.5398451