DocumentCode :
3285807
Title :
Self-adaptive parameter selection in one-dimensional tsallis entropy thresholding with Particle Swarm Optimization algorithm
Author :
Lin, Aiying ; Wu, Lili ; Zheng, Baozhou ; Zan, Hongying
Author_Institution :
Coll. of Sci., Henan Agric. Univ., Zhengzhou, China
Volume :
3
fYear :
2010
fDate :
16-18 Oct. 2010
Firstpage :
1460
Lastpage :
1464
Abstract :
A self-adaptive parameter selection algorithm for parameter q in one-dimensional Tsallis entropy image thresholding is presented based on optimization algorithm. The method can get the suitable parameter and the optimal threshold value for different kinds of images, which selects the parameter based on the uniformity measure, an image segmentation quality evaluation criterion, as fitness function and searches for the optimal parameter by the Particle Swarm Optimization (PSO) algorithm. The results show that in general cases the optimal parameter q can be found between 0 and 1; if more accurate segmentation is needed, the optimal value of q can be found between 0 and 10.
Keywords :
adaptive signal processing; entropy; image segmentation; particle swarm optimisation; entropy image; fitness function; image segmentation quality evaluation criteria; one dimensional Tsallis entropy; particle swarm optimization algorithm; self adaptive parameter selection; uniformity measure; Computer vision; Entropy; Graphics; Image segmentation; Particle swarm optimization; Signal processing algorithms; Image segmentation; One-dimensional Tsallis entropy; Particle Swarm Optimization; Self-adaptive Parameter Selection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image and Signal Processing (CISP), 2010 3rd International Congress on
Conference_Location :
Yantai
Print_ISBN :
978-1-4244-6513-2
Type :
conf
DOI :
10.1109/CISP.2010.5648295
Filename :
5648295
Link To Document :
بازگشت