• DocumentCode
    3286261
  • Title

    A novel thin elongated objects segmentation based on fuzzy connectedness and GMM learning

  • Author

    Qingsong Zhu ; Ricang Ye ; Ling Shao ; Qi Li ; Yaoqin Xie

  • Author_Institution
    Shenzhen Inst. of Adv. Technol., Shenzhen, China
  • fYear
    2013
  • fDate
    15-18 Sept. 2013
  • Firstpage
    4273
  • Lastpage
    4276
  • Abstract
    Extraction of thin elongated objects from natural images is an important task in many computer vision applications such as image segmentation, object detection. Extensive approaches attempt to solve this issue with region features or prior knowledge, causing local minimum or short cut path. In this paper, we propose a semi-automatic method for the extraction of thin elongated objects. Given the input image, we manually label some foreground/background pixels as training samples. We use Guassian mixture model (GMM) to model background and extract object. We compute fuzzy affinity based on G-MM and take the framework of fuzzy connectedness (FC) to obtain fuzzy connected component. To obtain better result, we use adaptive components for GMM. Qualitative and quantitative comparisons show that our method outperforms many classical algorithms in terms of accuracy.
  • Keywords
    Gaussian processes; feature extraction; fuzzy set theory; image segmentation; learning (artificial intelligence); mixture models; object detection; FC; GMM learning; Gaussian mixture model; computer vision applications; foreground-background pixels; fuzzy affinity; fuzzy connected component; fuzzy connectedness; image segmentation; local minimum; natural images; object detection; region features; semiautomatic method; short cut path; thin elongated object extraction; thin elongated object segmentation; training samples; GMM; fuzzy connectedness; image segmentation; thin elongated objects;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2013 20th IEEE International Conference on
  • Conference_Location
    Melbourne, VIC
  • Type

    conf

  • DOI
    10.1109/ICIP.2013.6738880
  • Filename
    6738880