Title :
Neutron resonance radiography for explosives detection: technical challenges
Author :
Raas, Whitney L. ; Blackburn, Brandon W. ; Boyd, Erin ; Hall, James ; Kohse, Gordon ; Lanza, Richard C. ; Rusnak, Brian ; Watterson, John I W
Author_Institution :
Dept. of Nucl. Sci. & Eng., MIT, Cambridge, MA
Abstract :
Fast neutron resonance radiography (NRR) has recently become a focus of investigation as a supplement to conventional X-ray systems as a non-invasive, non-destructive means of detecting explosive material concealed in checked luggage or cargo containers at airports. Using fast (1-6 MeV) neutrons produced by the D(d,n)3He reaction, NRR provides both an imaging capability and the ability to determine the chemical composition of materials in baggage or cargo. Elemental discrimination is achieved by exploiting the resonance features of the neutron cross-section for oxygen, nitrogen, carbon, and hydrogen. Simulations have shown the effectiveness of multiple-element NRR through Monte Carlo transport methods; this work is focused on the development of a prototype system that will incorporate an accelerator-based neutron source and a neutron detection and imaging system to demonstrate the realistic capabilities of NRR in distinguishing the elemental components of concealed objects. Preliminary experiments have exposed significant technical difficulties unapparent in simulations, including the presence of image contamination from gamma ray production, the detection of low-fluence fast neutrons in a gamma field, and the mechanical difficulties inherent in the use of thin foil windows for gas cell confinement. To mitigate these concerns, a new gas target has been developed to simultaneously reduce gamma ray production and increase structural integrity in high flux gas targets. Development of a neutron imaging system and neutron counting based on characteristic neutron pulse shapes have been investigated as a means of improving signal to noise ratios, reducing irradiation times, and increasing the accuracy of elemental determination
Keywords :
Monte Carlo methods; explosions; gamma-ray production; imaging; neutron detection; neutron radiography; neutron sources; nondestructive testing; Monte Carlo transport methods; accelerator-based neutron source; carbon; elemental discrimination; explosives detection; fast neutron resonance radiography; gamma field; gamma ray production; gas cell confinement; high flux gas targets; hydrogen; image contamination; low-fluence fast neutron detection; material chemical composition; multiple-element NRR; neutron counting; neutron cross-section; neutron detection system; neutron imaging system; neutron pulse shapes; nitrogen; noninvasive nondestructive testing; oxygen; thin foil windows; Explosives; Focusing; Neutrons; Optical imaging; Production; Radiography; Resonance; X-ray detection; X-ray detectors; X-ray imaging;
Conference_Titel :
Nuclear Science Symposium Conference Record, 2005 IEEE
Conference_Location :
Fajardo
Print_ISBN :
0-7803-9221-3
DOI :
10.1109/NSSMIC.2005.1596222