• DocumentCode
    32875
  • Title

    Combining Superresolution and Fusion Methods for Sharpening Misrsat-1 Data

  • Author

    Metwalli, Mohamed R. ; Nasr, Ayman H. ; Faragallah, Osama S. ; El-Rabaie, Sayed ; Abd El-Samie, F.E.

  • Author_Institution
    Data Reception, Analysis and Receiving Station Affairs Division, National Authority for Remote Sensing and Space Sciences, Cairo, Egypt
  • Volume
    51
  • Issue
    4
  • fYear
    2013
  • fDate
    Apr-13
  • Firstpage
    2292
  • Lastpage
    2301
  • Abstract
    This paper presents an efficient technique for sharpening of Misrsat-1 data using superresolution (SR) methods and fusion methods. Due to the difference in spectral characteristics between bands 1 and 3 and the panchromatic (PAN) band of Misrsat-1, we implement SR on high details of these bands and use the resulting image to sharpen the bands of the multispectral (MS) image. Several SR methods are tested and compared in this paper for this purpose. The first class of methods uses spatial-domain SR, in which SR is performed on the high-pass details extracted from bands 1 and 3 and the PAN band. The superresolved high-pass details are used after that to enhance the spatial resolution of the MS data using the high-pass filter fusion method. The second class of methods depends on the interpolation of coefficients in the high-frequency subbands of a multiscale representation of bands 1 and 3 and the PAN band and an additive fusion method to add the high-frequency subband coefficients to different bands of the MS image. A comparison study between different SR methods belonging to the aforementioned classes such as nonuniform interpolation (NUI), projection onto convex sets (POCS), iterative back projection (IBP), structure-adaptive normalized convolution (SANC), and adaptive steering kernel regression (ASKR) is presented. The simulation results show that iterative SR methods such as IBP and POCS produce more noise than interpolation methods such as NUI, SANC, and ASKR. The results also reveal that combining the ASKR with a multiscale decomposition enhances the signal-to-noise ratio.
  • Keywords
    Image reconstruction; Interpolation; Kernel; Noise; Spatial resolution; Strontium; Fusion; Misrsat-1; superresolution (SR);
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2012.2209203
  • Filename
    6269082