DocumentCode :
3287566
Title :
Comparison between PSO and OLS for NARX parameter estimation of a DC motor
Author :
Mohamad, M.S.A. ; Yassin, I.M. ; Zabidi, Azlee ; Taib, M.N. ; Adnan, R.
Author_Institution :
Fac. of Electr. Eng., Univ. Teknol. Mara, Shah Alam, Malaysia
fYear :
2013
fDate :
22-25 Sept. 2013
Firstpage :
27
Lastpage :
32
Abstract :
Recent works suggest that the Particle Swarm Optimization (PSO) algorithm is a highly-efficient optimization technique for structure selection of NARMAX and its derivative models. This research extends those findings by proposing PSO for parameter estimation of a Nonlinear Auto-Regressive with Exogenous (NARX) model for a Direct Current (DC) motor. The proposed method was compared to the established Orthogonal Least Squares (OLS) method. The findings indicate that PSO was comparable to OLS in solving the Least Squares (LS) parameter estimation problem posed in the NARX model.
Keywords :
DC motors; autoregressive processes; parameter estimation; particle swarm optimisation; regression analysis; DC motor; NARMAX structure selection; NARX parameter estimation; OLS; PSO; derivative models; direct current motor; nonlinear autoregressive-with-exogenous model; orthogonal least squares method; particle swarm optimization algorithm; DC motors; Industrial electronics; Mathematical model; Optimization; Parameter estimation; Silicon; Training; DC Motor; NARX; Nonlinear System Identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics and Applications (ISIEA), 2013 IEEE Symposium on
Conference_Location :
Kuching
Print_ISBN :
978-1-4799-1124-0
Type :
conf
DOI :
10.1109/ISIEA.2013.6738962
Filename :
6738962
Link To Document :
بازگشت