DocumentCode :
3292161
Title :
Bundle adjustment and Kalman filtering for homography estimation
Author :
Imran, Saad Ali ; Aouf, Nabil
Author_Institution :
Dept. of Inf. & Syst. Eng., Cranfied Univ., Swindon, UK
fYear :
2013
fDate :
12-14 Dec. 2013
Firstpage :
1060
Lastpage :
1064
Abstract :
This document compares global bundle adjustment via the ubiquitous Levenberg-Marquardt to a Kalman filter to estimate parameters of a homographic transformation between two or more images starting from bad initial conditions. We show that the filtering technique outperforms sparse bundle adjustment in terms of projection error and computational costs. The techniques are tested on real world images of an indoor and outdoor scene.
Keywords :
Kalman filters; image processing; Kalman filter; bad initial condition; bundle adjustment; homographic transformation; homography estimation; indoor scene; outdoor scene; ubiquitous Levenberg-Marquardt methods; Barium; Cameras; Equations; Estimation; Jacobian matrices; Kalman filters; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on
Conference_Location :
Shenzhen
Type :
conf
DOI :
10.1109/ROBIO.2013.6739604
Filename :
6739604
Link To Document :
بازگشت