Title :
Synchronization of coupled oscillators is a game
Author :
Huibing Yin ; Mehta, P.G. ; Meyn, S.P. ; Shanbhag, U.V.
Author_Institution :
Dept. of Mech. Sci. & Eng., Univ. of Illinois at Urbana-Champaign (UIUC), Urbana, IL, USA
fDate :
June 30 2010-July 2 2010
Abstract :
The purpose of this paper is to understand phase transition in noncooperative dynamic games with a large number of agents. Applications are found in neuroscience, biology, economics, as well as traditional engineering applications. The focus of analysis is a variation of the large population LQG model of Huang et. al. 2007, comprised here of a controlled nonlinear N-dimensional stochastic differential equation model, coupled only through a nonlinear cost function. The states are interpreted as the phase angle for a collection of non-homogeneous oscillators, and in this way the model may be regarded as an extension of the classical coupled oscillator model of Kuramoto. A deterministic PDE model is proposed, which is shown to approximate the stochastic system as the population size approaches infinity. Key to the analysis of the PDE model is the existence of a particular Nash equilibrium in which the agents `opt out´ of the game, setting their controls to zero, resulting in the `incoherence´ equilibrium. Methods from dynamical systems theory are used in a bifurcation analysis, based on a linearization of the PDE model about the incoherence equilibrium. A critical value of the control cost parameter is identified: Above this value, the oscillators are incoherent; and below this value (when control is sufficiently cheap) the oscillators synchronize. These conclusions are illustrated with results from numerical experiments.
Keywords :
bifurcation; game theory; linear quadratic Gaussian control; nonlinear control systems; nonlinear differential equations; oscillators; partial differential equations; stochastic systems; synchronisation; Nash equilibrium; PDE model; bifurcation analysis; coupled heterogeneous nonlinear systems; coupled oscillators synchronization; incoherence equilibrium; large population LQG model; noncooperative dynamic games; nonhomogeneous oscillators; nonlinear N-dimensional stochastic differential equation model; nonlinear cost function; phase transition; stochastic system; Biological system modeling; Biology; Cost function; Couplings; Differential equations; H infinity control; Neuroscience; Oscillators; Stochastic processes; Stochastic systems;
Conference_Titel :
American Control Conference (ACC), 2010
Conference_Location :
Baltimore, MD
Print_ISBN :
978-1-4244-7426-4
DOI :
10.1109/ACC.2010.5531465