Title :
Carbon-based thermal stabilization techniques for junction and silicide engineering for high performance CMOS periphery in memory applications
Author :
Ortolland, C. ; Mathew, S. ; Duffy, R. ; Saino, K. ; Kim, C.S. ; Mertens, S. ; Horiguchi, N. ; Vrancken, C. ; Chiarella, T. ; Kerner, C. ; Absil, P.P. ; Lauwers, A. ; Biesemans, S. ; Hoffmann, T.
Author_Institution :
IMEC, Leuven
Abstract :
Carbon-based thermal stabilization techniques have been used for improving performance of CMOS periphery devices in memory application. Current drives are shown to improve by 15 and 30% for N & PMOS, respectively, external resistance of P+ improves by 15 X and N+ by 30%, and RO delay reduction of 25% compared to the conventional contact scheme.
Keywords :
CMOS memory circuits; DRAM chips; MOSFET; carbon; thermal stability; C; NMOS device; PMOS device; RO delay reduction; carbon-based thermal stabilization technique; external resistance; high performance CMOS periphery; junction engineering; memory application; silicide engineering; Boron; Contact resistance; Dielectric substrates; Implants; MOS devices; Random access memory; Silicides; Simulated annealing; Switches; Thermal engineering;
Conference_Titel :
Ultimate Integration of Silicon, 2009. ULIS 2009. 10th International Conference on
Conference_Location :
Aachen
Print_ISBN :
978-1-4244-3704-7
DOI :
10.1109/ULIS.2009.4897559