Title :
Coupling polarimetric L-Band insar and airborne lidar to characterize the geomorphological deformations in the piton de la fournaise volcano
Author :
Heggy, Essam ; Sedze, Melanie ; Bretar, Frederic ; Jacquemoud, Stephane ; Rosen, Paul A. ; Wada, Kozin ; Staudacher, Thomas
Author_Institution :
Jet Propulsion Lab., Pasadena, CA, USA
Abstract :
Until recently the coarse resolution of topographic mapping acted as a break on understanding the forces and processes that shape the Earth´s surface. However, active surface deformation is an important indicator for the earth crustal dynamics since it is directly linked to earthquakes, volcanic eruptions and landslides. Both airborne laser scanning systems (LiDAR) and spaceborne interferometric synthetic aperture radars (InSAR) have provided valuable information for many case studies requiring highresolution characterization of ground movement in relatively large areas to assess the threat and impact of natural hazards especially for volcanic eruptions. The Piton de la Fournaise volcano (Reunion Island, France) is one of the most active basaltic shield volcanoes in the world. It has reached an anomalous activity level in the past years with a major eruption occurring in April 2007. In this paper, we explore the statistical, spatial and temporal behavior of the L-Band backscattering coefficient at both HH and HV polarizations over different type of terrains in the Fournaise lava field as a function of the LiDAR intensity data. The correlation will be used in setting empirical models to correct for the L-Band phase distortion on ash and rough surfaces in volcanic terrains.
Keywords :
Earth crust; geomorphology; hazards; optical radar; radar interferometry; radar polarimetry; remote sensing by radar; spaceborne radar; statistical analysis; synthetic aperture radar; terrain mapping; volcanology; Earth crustal dynamics; Earth surface; Fournaise lava field; France; L-band backscattering coefficient; L-band phase distortion; LiDAR intensity data; Piton de la Fournaise volcano; Reunion Island; active basaltic shield volcano; active surface deformation; airborne LiDAR; airborne laser scanning system; anomalous activity; ash; geomorphological deformation characterization; ground movement; natural hazard; polarimetric L-band InSAR; rough surface; spaceborne interferometric synthetic aperture radars; spatial behavior; statistical behavior; temporal behavior; topographic mapping; volcanic eruption; volcanic terrain; Earth; L-band; Laser radar; Monitoring; Remote sensing; Surface topography; Volcanoes;
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
DOI :
10.1109/IGARSS.2010.5649245