• DocumentCode
    329520
  • Title

    Complexity-regularized image restoration

  • Author

    Liu, Juan ; Moulin, Pierre

  • Author_Institution
    Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA
  • Volume
    1
  • fYear
    1998
  • fDate
    4-7 Oct 1998
  • Firstpage
    555
  • Abstract
    We propose the use of complexity regularization in image restoration. This is a flexible estimation method which borrows from previous developments in nonparametric estimation theory. The regularized estimation problem is formulated in the wavelet domain and solved using a computationally efficient multiscale relaxation algorithm
  • Keywords
    computational complexity; image restoration; maximum likelihood estimation; optimisation; smoothing methods; wavelet transforms; complexity-regularized image restoration; computationally efficient multiscale relaxation algorithm; maximum likelihood estimation; nonparametric estimation theory; nonquadratic smoothness penalities; optimization; regularized estimation problem; wavelet domain; AWGN; Additive white noise; Cost function; Estimation theory; Gaussian noise; Image restoration; Maximum likelihood estimation; Wavelet coefficients; Wavelet domain; Wavelet transforms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on
  • Conference_Location
    Chicago, IL
  • Print_ISBN
    0-8186-8821-1
  • Type

    conf

  • DOI
    10.1109/ICIP.1998.723563
  • Filename
    723563